

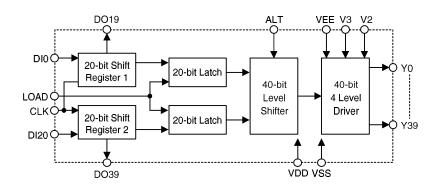
Features

- Operating voltage: 4.5V~5.5V
- LCD driving voltage: 8V~16V
- Applicable LCD duty cycle from 1/8 to 1/64

Applications

- Electronic dictionaries
- Portable computers

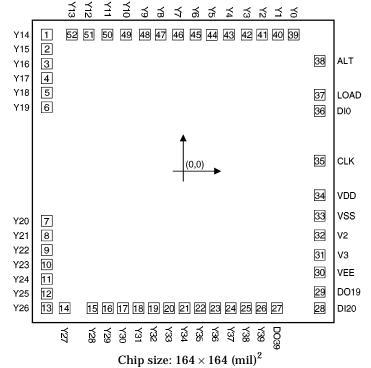
- Suitable for various types of LCD panel
- Bias voltage adjustable from an external source
- Remote controllers
- Calculators


General Description

The HT1602 is a dot matrix LCD segment driver LSI implemented in CMOS technology. It is equipped with a 40-bit shift register (two 20-bit shift registers), a 40-bit latch (two 20-bit latches), a 40-bit level shifter, a 40-bit 4-level driver, and control circuits.

The HT1602 can convert serial data received from an LCD controller to parallel data and

Block Diagram


then send them out as LCD driving waveforms to the LCD panel. The HT1602 can be applied up to 1/64 duty. Furthermore, the bias voltage which determines the LCD driving voltage can be optionally supplied from an external source, thus the chip is suitable for driving various types of LCD panel. These special features increase the versatility of the chip.

1

Pad Assignment

* The IC substrate should be connected to VDD in the PCB layout artwork.

Pad Coordinates

Y Pad No. Y Pad No. Y Pad No. Х Х Х -76.2376.23 19 -16.61-76.2337 75.78 42.66 1 2 -76.2368.13 20 -8.10-76.2338 75.78 61.56 3 -76.2360.03 21 0.5 -76.2339 61.20 76.23 4 -76.2351.93 22 9.10 -76.2340 52.56 76.23 -76.23 -76.23 5 43.83 23 17.60 41 43.65 76.23 6 -76.2335.73 24 26.15 -76.2342 35.10 76.23 7 -76.23-27.6325 34.70 -76.2343 25.20 76.23 8 -76.23-35.7326 43.25 -76.2344 15.71 76.23 9 -76.23-43.8327 51.89 -76.2345 6.66 76.23 10 -76.23-76.2376.23 -51.9328 75.78 46 -3.0611 -76.23-60.0329 75.78 -67.1447 -12.8376.23 -76.23-68.1330 75.78 -56.34-21.6076.23 12 48 -76.23-76.2331 76.23 13 75.78 -46.6249 -32.04-66.33-76.2332 -35.64-42.4876.23 14 75.78 50 -50.81-76.23-52.9215 33 75.78 -24.7551 76.23 -42.26-76.2334 75.78 -13.3252 -62.1576.23 16 17 -33.71-76.2335 75.78 6.03 -76.2318 -25.1636 75.78 33.66

2

Unit: mil

Pad Description

Pad No.	Pad Name	I/O	Description			
1~26	Y14~Y39	0	LCD driver outputs for segments*			
27	DO39	0	Shift register output for the 40th bit data			
28	DI20	Ι	Input data of shift register 2			
29	DO19	0	Shift register output for the 20th bit data			
30	VEE	Ι	LCD power supply			
31, 32	V3, V2	Ι	LCD bias supply voltage			
33	VSS	_	Negative power supply			
34	VDD	_	Positive power supply			
35	CLK	Ι	Clock pulse input for the shift register			
36	DI0	Ι	Input data of shift register 1			
37	LOAD	Ι	Latching signal to latch shift register data			
38	ALT	Ι	Alternate input signal for LCD driving waveforms			
39~52	Y0~Y13	0	LCD driver outputs for segments*			

*: For Y0~Y39, any of VDD, V2, V3 or VEE can be selected as a display driving source according to the combination of latched data level and ALT signal. Refer to the following table:

Latched Data	ALT	Display Data Output Leve		
н	Н	$V_{\rm EE}$		
п	L	V _{DD}		
т	Н	V3		
L	L	V2		

Absolute Maximum Ratings*

Supply Voltage	0.3V to 6V
Input Voltage	$V_{SS}0.3V$ to $V_{DD}\mbox{+-}0.3V$

Storage Temperature–50°C to 125°C	
Operating Temperature20°C to 70°C	

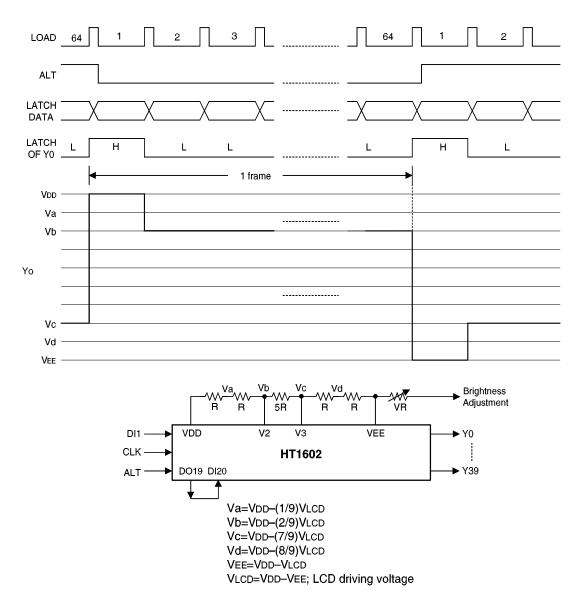
*Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

3

Ta=25°C

D.C. Characteristics

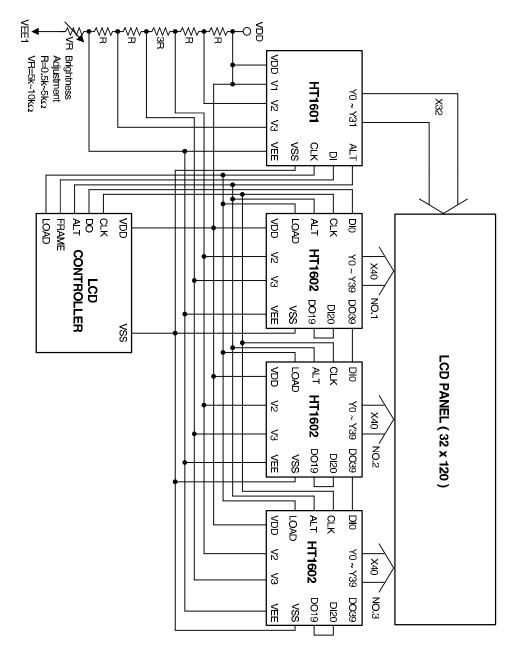
Shal	Parameter	Test Conditions		Min.	True	Max.	Unit
Symbol	Farameter	VDD	Conditions	WIIN.	Тур.	Max.	Unit
V _{DD}	Operating Voltage	_	_	4.5		5.5	V
I _{DD}	Operating Current	5V	No load	_	100	300	μΑ
ISTB	Standby Current	5V	—		1	5	μΑ
flcd	Max. Clock Frequency	5V	_	3.3	_		MHz
twclk	Clock Pulse Width	5V	_	125			ns
V _{IL}	"L" Input Voltage	5V	_		_	$0.2V_{DD}$	V
V _{IH}	"H" Input Voltage	5V	_	0.8V _{DD}	_	_	V
V _{LCD}	LCD Driving Voltage	5V		8		16	V


28th Aug '98

4

Timing Diagrams

1/64 duty and 1/9 bias (with the ALT changing polarity for every frame, a frame=64 commons)


28th Aug '98

5

Application Circuits

1/32 duty and 1/7 bias

6